Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

High- and low-temperature $\mathrm{La}_{2} \mathrm{RuO}_{5}$ by powder neutron diffraction

Stefan G. Ebbinghaus

Lehrstuhl für Festkörperchemie, Institut für Physik, Universität Augsburg Universitätsstraße 1, D-86159 Augsburg, Germany
Correspondence e-mail: stefan.ebbinghaus@physik.uni-augsburg.de

Received 9 February 2005
Accepted 11 May 2005
Online 31 August 2005
The structure of dilanthanum ruthenium pentoxide was solved by powder neutron diffraction at room temperature and 1.5 K . High-temperature $\mathrm{La}_{2} \mathrm{RuO}_{5}$ crystallizes in the monoclinic space group $P 2_{1} / c$. Upon cooling, the sample undergoes a phase transition to the triclinic low-temperature form (space group $P \overline{1}$). This transition leads to pronounced changes in the $\mathrm{Ru}-\mathrm{O}-\mathrm{Ru}$ bond distances, resulting in a dimerization of the ruthenium ions.

Comment

Among the various modifications of the perovskite structure, compounds belonging to the so-called [110]-phases are quite special. In these oxides, the three-dimensional perovskite framework can be considered to be cut along the [110] direction, resulting in blocks of different possible thicknesses. Many of the [110]-phases have the general composition $A_{n} B_{n} \mathrm{O}_{3 n+2}$, in which n represents the number of BO_{6} octahedra within the blocks (Lichtenberg et al., 2001). The thinnest possible blocks correspond to zigzag chains of single $B \mathrm{O}_{6}$ octahedra, which are isolated by the A-type cations. This arrangement is found, for example, in LaTaO_{4} ($n=2$, corresponding to $\mathrm{La}_{2} \mathrm{Ta}_{2} \mathrm{O}_{8} ;$ Cava \& Roth, 1981).

The title compound is closely related to the $A_{n} B_{n} \mathrm{O}_{3 n+2}$ family of oxides. It can be described formally as an $n=2$ member, in which the perovskite slabs are separated by one additional $A O$ unit. Fig. 1 shows the structural relationship between the cubic perovskite archetype structure, $\mathrm{La}_{2} \mathrm{RuO}_{5}$, and the [110]-phases. $\mathrm{La}_{2} \mathrm{RuO}_{5}$ was discovered independently by two groups. Boullay et al. (2003) published an ab initio structural determination based on powder X-ray diffraction data, while Khalifah et al. (2002) reported electrical and magnetic properties. In the latter paper, a structural phase transition at 160 K was also described. This transition is accompanied by strong changes in the magnetic susceptibility and electrical resistivity. Khalifah et al. (2002) used powder neutron diffraction for their investigations, but unfortunately no structural details were given and to the best of our knowledge this information has not been published so far. In
the course of our own research on the physical properties of ruthenates, we came across the need for structural data for both the high-temperature (ht) and the low-temperature (lt) modification of $\mathrm{La}_{2} \mathrm{RuO}_{5}$. As a starting model for ht- $\mathrm{La}_{2} \mathrm{RuO}_{5}$, the atomic coordinates given by Boullay et al. (2003) were used. For the triclinic lt-phase, possible new positions were generated using the program PowderCell (Kraus \& Nolze, 1996). Figs. 2 and 3 show the results of the refinements. A graphical presentation of the crystal structures at 293 and 1.5 K is given in Fig. 4.

In the high-temperature modification, atom La1 is coordinated by nine O atoms, with bond distances ranging from

Figure 1
Structural similarities between the [110]-phases and $\mathrm{La}_{2} \mathrm{RuO}_{5}$. The cubic perovskite (top left) can be considered the ∞ member of the $A_{n} B_{n} \mathrm{O}_{3 n+2}$ series. The representatives for the $n=4$ and $n=2$ compounds are $\mathrm{SrTaO}_{3.5}$ and LaTaO_{4}, respectively.

Figure 2
Rietveld refinement plot of $\mathrm{La}_{2} \mathrm{RuO}_{5}$ at 293 K .
2.325 (6) to 2.968 (6) \AA. The coordination geometry is rather irregular and cannot be described in terms of a simple polyhedron. For atom La2, an irregular ninefold O -atom coordination is observed, with bond distances ranging from 2.342 (7) to $2.836(6) \AA$. It is noteworthy that the shortest $\mathrm{La}-\mathrm{O}$ distances are found for atom O 5 , i.e. the O atom in between the perovskite blocks. The RuO_{6} moieties can be described as slightly distorted octahedra. The difference between the longest and shortest bonds is 0.13 (1) \AA. The $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ bond angles range from 82.5 (4) to 95.2 (4) ${ }^{\circ}$. The $\mathrm{Ru}-\mathrm{Ru}$ distances in the zigzag chains are, within experimental error, identical to the $\mathrm{Ru} \cdots \mathrm{Ru}$ distances along the crystallographic c axis. Additionally, the Ru1 ${ }^{\text {iv }}-\mathrm{O} 3-\mathrm{Ru} 1^{\mathrm{v}}$ (zigzag chain) and Ru1 ${ }^{\mathrm{v}}-$ $\mathrm{O} 4-\mathrm{Ru} 1^{\mathrm{iii}}$ (along c) bond angles are very similar [155.4 (5) and $152.8(4)^{\circ}$, respectively; symmetry codes as in Table 1].
For the low-temperature modification, the coordination geometries change significantly, although the dimensions of the unit cell remain very similar. For atoms La 1 and $\mathrm{La} 1 A$, the bond lengths lie in the ranges $2.320(7)-3.054$ (6) and 2.352 (6)-3.000 (6) \AA, respectively. Interestingly, the La1-

Figure 3
Rietveld refinement plot of $\mathrm{La}_{2} \mathrm{RuO}_{5}$ at 1.5 K .

Figure 4
The structure of ht- (left) and $1 t-\mathrm{La}_{2} \mathrm{RuO}_{5}$ (right), viewed along [001].
$\mathrm{O} 1 A$ bond becomes rather short $[2.381(7) \AA$. The interatomic distances for atoms La 2 and $\mathrm{La} 2 A$ are 2.332 (6)2.820 (7) and 2.346 (7)-2.834 (7) A, respectively. The most interesting changes concern the ruthenium-oxygen coordination. Within the zigzag chains, the $\mathrm{Ru} 1^{\mathrm{i}}-\mathrm{O} 3 A-\mathrm{Ru} 1 A^{\mathrm{ix}}$ distance is 0.23 (2) \AA shorter than the $\mathrm{Ru} 1-\mathrm{O} 3-\mathrm{Ru} 1 A^{\mathrm{ix}}$ distance. A similar, although less pronounced, effect was found for the distances parallel to the c direction; here, the $\mathrm{Ru} \mathrm{V}^{\mathrm{vii}}-\mathrm{O} 4-\mathrm{Ru} 1 A^{\mathrm{ix}}$ distance is 0.12 (2) \AA shorter than the $\mathrm{Ru} 1^{\mathrm{i}}-\mathrm{O} 4 A-\mathrm{Ru} 1 A^{\mathrm{xi}}$ distance. These changes in the interatomic distances can be described as a dimerization of the ruthenium ions, which apparently occurs both within the zigzag chains and along c. In addition, the bond angles differ significantly in the ht- and lt-modifications. The $\mathrm{Ru}-\mathrm{O}-\mathrm{Ru}$ angles within the zigzag chains are $153.2(5)^{\circ}$ for $\mathrm{Ru} 1-\mathrm{O} 3-$ $\mathrm{Ru} 1 A^{\mathrm{ix}}$ and $160.2(6)^{\circ}$ for $\mathrm{Ru} 1^{\mathrm{i}}-\mathrm{O} 3 A-\mathrm{Ru} 1 A^{\mathrm{ix}}$. The corresponding angles along the c axis ($\mathrm{Ru} 1^{\mathrm{vii}}-\mathrm{O} 4-\mathrm{Ru} 1 A^{\mathrm{ix}}$ and $\mathrm{Ru} 1^{\mathrm{i}}-\mathrm{O} 4 A-\mathrm{Ru} 1 A^{\mathrm{xi}}$), on the other hand, are almost identical (151°; symmetry codes as in Table 2). It is worth noting that within the zigzag chains the shorter $\mathrm{Ru} \cdots \mathrm{Ru}$ distance is accompanied by a bond angle closer to 180°. Both effects are expected to increase the superexchange interaction between these neighbouring ruthenium ions. Calculations of the electronic band structure based on our Rietveld results are currently in progress and the results will be reported elsewhere.

Experimental

Polycrystalline $\mathrm{La}_{2} \mathrm{RuO}_{5}$ was prepared from $\mathrm{La}_{2} \mathrm{O}_{3}$ and $\mathrm{RuO}_{2} . \mathrm{La}_{2} \mathrm{O}_{3}$ was dried at 1173 K for 6 h prior to use. The thoroughly ground stoichiometric mixture was heated in an alumina crucible at 1423 K for 48 h with one intermediate grinding. Phase purity was checked by preliminary X-ray diffraction measurements.

High-temperature phase

Crystal data

$\mathrm{La}_{2} \mathrm{RuO}_{5}$
$M_{r}=458.89$
Monoclinic, $P 2_{1} / c$
$a=9.1850$ (4) \AA
$b=5.8294$ (2) \AA
$c=7.9552(3) \AA$
$\beta=100.79(2)^{\circ}$
$V=418.42$ (4) \AA^{3}
$Z=4$
Data collection
SINQ HRPT diffractometer
Specimen mounting: vanadium can Specimen mounted in transmission mode
Scan method: fixed

Refinement

Refinement on $I_{\text {net }}$
$R_{\mathrm{p}}=0.023$
$R_{\text {wp }}=0.029$
$R_{\text {exp }}=0.018$
$S=1.61$
Wavelength of incident radiation: 1.4935 A

$$
D_{x}=7.285 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Neutron radiation
$\lambda=1.4935 \AA$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Specimen shape: cylinder

$35 \times 8 \mathrm{~mm}$

Particle morphology: irregular powder, black

Absorption correction: for a cylinder mounted on the φ axis $2 \theta_{\text {min }}=4.6,2 \theta_{\text {max }}=164.9^{\circ}$ Increment in $2 \theta=0.05^{\circ}$

Profile function: Thompson-CoxHastings pseudo-Voigt 46 parameters
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\max }<0.001$
Preferred orientation correction: none

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for the high-temperature phase.

Ru1-O1	1.939 (7)	$\mathrm{Ru} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.048 (8)
$\mathrm{Ru} 1-\mathrm{O} 2^{\text {i }}$	1.954 (7)	$\mathrm{Ru} 1-\mathrm{O} 4{ }^{\text {iii }}$	2.044 (8)
$\mathrm{Ru} 1-\mathrm{O}^{\text {i }}$	2.065 (8)	Ru1-Ru1 ${ }^{\text {ii }}$	3.975 (8)
$\mathrm{Ru} 1-\mathrm{O}^{\text {ii }}$	2.004 (7)	$\mathrm{Ru} 1-\mathrm{Ru} 1^{\mathrm{xii}}$	3.978 (7)
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O} 2^{\mathrm{i}}$	95.2 (4)	$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 3{ }^{\text {ii }}$	95.1 (5)
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O}^{\mathrm{i}}$	177.2 (5)	$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 4^{\text {ii }}$	86.0 (4)
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O}^{\text {ii }}$	87.2 (4)	$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 4^{\text {iii }}$	94.2 (4)
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O}^{\text {ii }}$	92.6 (4)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Ru} 1-\mathrm{O} 4^{\text {ii }}$	88.1 (4)
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O} 4^{\text {iii }}$	87.2 (4)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Ru} 1-\mathrm{O} 4{ }^{\text {iii }}$	90.8 (5)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 3^{\mathrm{i}}$	82.5 (4)	$\mathrm{O} 4^{\text {ii }}-\mathrm{Ru} 1-\mathrm{O} 4^{\text {iii }}$	178.9 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ru} 1-\mathrm{O}^{\text {ii }}$	177.3 (5)	$\mathrm{Ru} 1^{\text {iv }}-\mathrm{O} 3-\mathrm{Ru} 1^{\text {v }}$	155.4 (5)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 4^{\mathrm{ii}}$	93.0 (4)	$\mathrm{Ru} 1{ }^{\text {v }}-\mathrm{O} 4-\mathrm{Ru} 1^{\text {iii }}$	152.8 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 4{ }^{\text {iii }}$	88.1 (4)		

Low-temperature phase

Crystal data

$\mathrm{La}_{4} \mathrm{Ru}_{2} \mathrm{O}_{10}$
$M_{r}=917.78$
$\mathrm{Triclinic}, P \overline{1}$
$a=9.1614(8) \AA$
$b=5.8075(5) \AA$
$c=7.9584(8) \AA$
$\alpha=89.78(8){ }^{\circ}$
$\beta=101.00(8)^{\circ}$
$\gamma=91.76(8)^{\circ}$
$V=415.45(13) \AA^{\circ}$

$$
Z=2
$$

$D_{x}=7.337 \mathrm{Mg} \mathrm{m}^{-3}$
Neutron radiation
$\lambda=1.4935 \AA$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=1.5$ (1) K
Specimen shape: cylinder
$35 \times 8 \mathrm{~mm}$
Particle morphology: irregular powder, black

Data collection
SINQ HRPT diffractometer
Specimen mounting: vanadium can Specimen mounted in transmission mode
Scan method: fixed

Refinement

Refinement on $I_{\text {net }}$
$R_{\mathrm{p}}=0.019$
$R_{\text {wp }}=0.023$
$R_{\text {exp }}=0.014$
$S=1.62$
Wavelength of incident radiation: 1.4935 A

Table 2
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for the low-temperature phase.

Ru1-O1	1.888 (8)	$\mathrm{Ru} 1 A-\mathrm{O}^{3 \mathrm{ix}}$	2.097 (8)
$\mathrm{Ru} 1-\mathrm{O} 2 A^{\text {vi }}$	2.042 (8)	$\mathrm{Ru} 1 A-\mathrm{O} 3 A^{\mathrm{ix}}$	1.969 (8)
Ru1-O3	2.062 (8)	$\mathrm{Ru} 1 A-\mathrm{O} 4{ }^{\text {ix }}$	2.049 (8)
$\mathrm{Ru} 1-\mathrm{O} 3{ }^{\text {vi }}$	1.957 (8)	$\mathrm{Ru} 1 A-\mathrm{O} 4 A^{\mathrm{x}}$	2.050 (8)
$\mathrm{Ru} 1-\mathrm{O} 4{ }^{\text {vii }}$	2.007 (8)	$\mathrm{Ru} 1-\mathrm{Ru} 1 A^{\mathrm{ix}}$	4.045 (8)
$\mathrm{Ru} 1-\mathrm{O} 4 A^{\text {vi }}$	2.118 (8)	$\mathrm{Ru} 1^{\mathrm{i}}-\mathrm{Ru} 1 A^{\mathrm{ix}}$	3.868 (8)
$\mathrm{Ru} 1 A-\mathrm{O} 1 A$	1.979 (8)	$\mathrm{Ru} 1^{\mathrm{vii}}-\mathrm{Ru} 1 A^{\mathrm{ix}}$	3.923 (8)
$\mathrm{Ru} 1 A-\mathrm{O}^{\text {viii }}$	1.873 (8)	$\mathrm{Ru} 1{ }^{\mathrm{i}}-\mathrm{Ru} 1 A^{\mathrm{xi}}$	4.036 (8)
$\mathrm{Ru} 1-\mathrm{O} 3-\mathrm{Ru} 1 A^{\mathrm{ix}}$	153.2 (5)	$\mathrm{Ru} 1^{\mathrm{vii}}-\mathrm{O} 4-\mathrm{Ru} 1 A^{\text {ix }}$	150.6 (5)
$\mathrm{Ru} 1{ }^{\mathrm{i}}-\mathrm{O} 3 A-\mathrm{Ru} 1 A^{\mathrm{ix}}$	160.2 (6)	$\mathrm{Ru} 1^{\mathrm{i}}-\mathrm{O} 4 A-\mathrm{Ru} 1 A^{\mathrm{xi}}$	151.0 (5)

parameters, it was furthermore necessary to use a common displacement parameter for the La atoms in the lt phase.

For both compounds, data collection: SINQ Instrument Control System (SICS) (Fischer et al., 2000); cell refinement: FULLPROF2000 (Rodríguez-Carvajal, 1990); data reduction: SINQ Instrument Control System (SICS); structure refinement: FULLPROF2000; molecular graphics: ATOMS for Windows (Dowty, 1995); publication software: PLATON (Spek, 2003) and FULPROF2000.

This work was partially performed at the spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Technical assistance by Dr Denis Sheptyakov is gratefully acknowledged. Thanks are expressed to the Deutsche Forschungsgemeinschaft for financial support (SFB 484) and to Mr B. Wunderlich for his help with the preparation of the sample of the title compound.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TY1006). Services for accessing these data are described at the back of the journal.

References

Boullay, P., Mercurio, D., Bencan, A., Meden, A., Drazic, G. \& Kosec, M. (2003). J. Solid State Chem. 170, 294-302.

Cava, R. J. \& Roth, R. S. (1981). J. Solid State Chem. 36, 139-147.
Dowty, E. (1995). ATOMS for Windows. Version 3.2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Fischer, P., Frey, G., Koch, M., Könnecke, M., Pomjakushin, V., Schefer, J., Thut, R., Schlumpf, N., Bürge, R., Greuter, U., Bondt, S. \& Berruyer, E. (2000). Phys. B: Condens. Matter, 276-278, 146-147.

Khalifah, P., Osborn, R., Huang, Q., Zandbergen, H. W., Jin, R., Liu, Y., Mandrus, D. \& Cava, R. J. (2002). Science, 297, 2237-2240.
Kraus, W. \& Nolze, G. (1996). J. Appl. Cryst. 29, 301-303.
Lichtenberg, F., Herrnberger, A., Wiedenmann, K. \& Mannhart, J. (2001). Prog. Solid State Chem. 29, 1-70.
Rodríguez-Carvajal, J. (1990). Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the IUCr, p. 127.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

